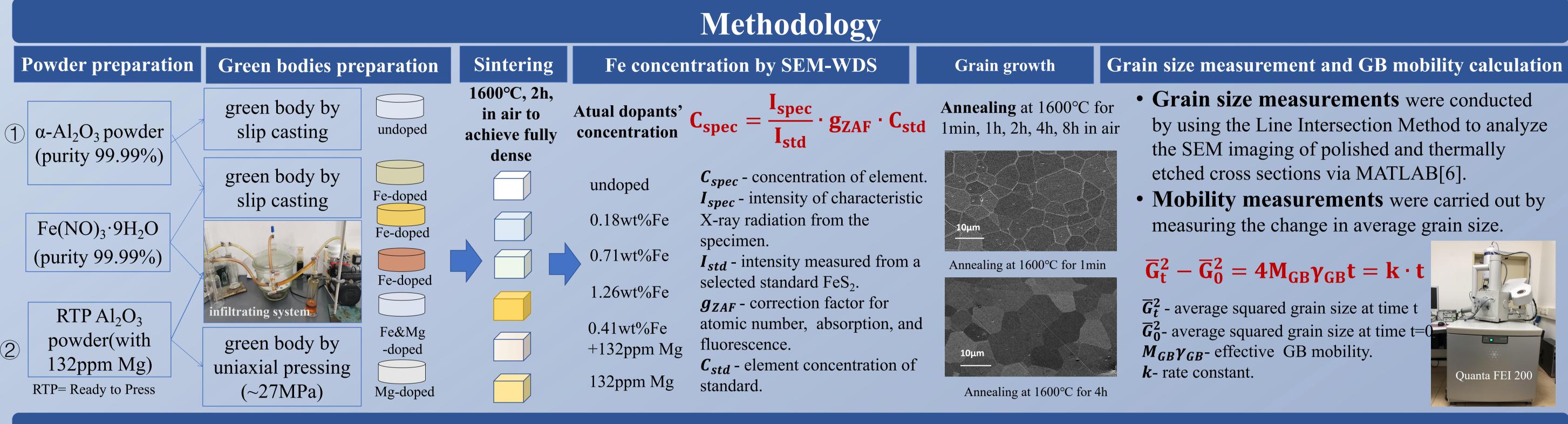


The Influence of Dopant Species on Alumina Grain Boundary Mobility

Xinnian Wu^{1,2}, Rachel Marder¹, and Wayne D. Kaplan¹ & Yuanshen Qi²

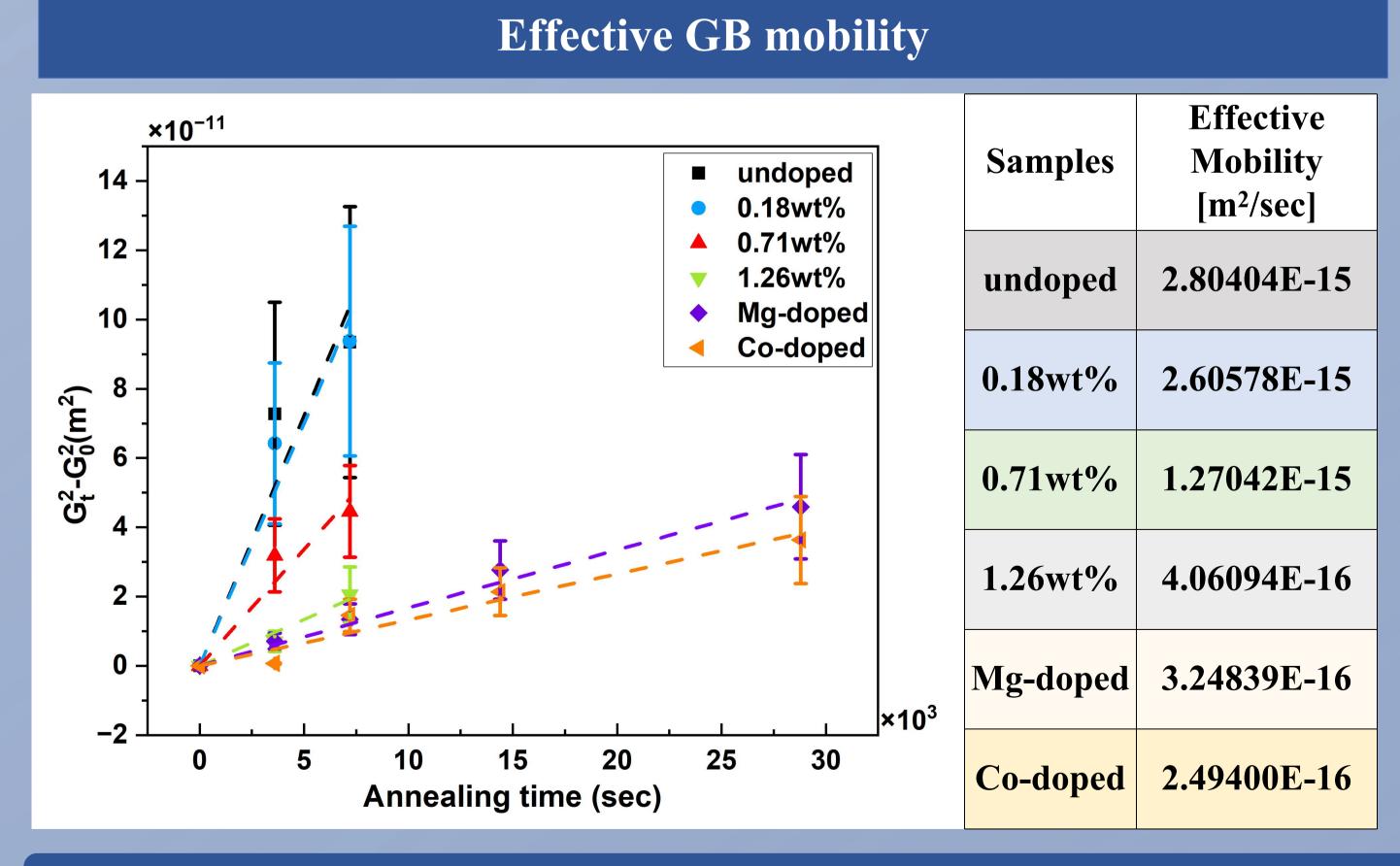


¹Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel ² Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, 515063 Shantou, Guangdong, China

Introduction & Motivation

- > The mechanical and functional properties of polycrystalline ceramics materials strongly depend on the grain size, which is controlled by grain growth during powder densification in the sintering process[1].
- > The extent of grain growth is directly related to grain boundary (GB) velocity, which depends on GB energy and GB mobility[2]. Therefore, GB mobility is one of the key parameters that dominates the properties of polycrystalline materials[1,3].
- > Chemical segregation to GBs can affect the GB velocity. Dopants and/or impurities can significantly change the GB mobility of materials[1,3-5]. The segregated solutes can then induce solute drag or solute acceleration, changing the grain boundary mobility and the microstructure evolves[1,3]

In this ongoing study, the influence of Fe as a solute on the GB mobility of alumina is studied.


Results and Discussions

Solubility limit: In order to correlate the gain growth kinetics in alumina with the possible complexion tansitions rather than with precipitation of a second phase, it is critical to determine the grain boundary mobility experimentally with confirmed limit of coexistence. The solubility limit of several dopants of interest in alumina

at 1600°C had been determined by our group.

đ Sµm		e 5 m				the microstructur 0.18wt%Fe-doped doped alumina (c) (d), and 2.93wt% annealed for 2 h a	e of undop ed alumina), 1.26wt% Fe-doped	(b), 0.71wt%Fe-6Fe-doped alumina alumina (e) n air.
Grain size (µm) 52 50 10 10	■ undoped ■ 0.18wt% ■ 0.71wt% ■ 1.26wt% ■			Grain size(µm)				■ undoped Fe-doped Mg-doped Co-doped
5	0 5000 10000 15000 Annealing tin		30000	6 -	0 5000	10000 15000 Annealing tim	20000 ne (sec)	25000 30000

Dopant species	Solubility limit [ppm]	Effect on GB mobility(m²/s) [below solubility limit]		
Ca ²⁺ [5]	51	increase		
$\mathbf{Mg^{2+}[5]}$	132	decrease		
Cr ³⁺	no known limit	decrease		
Fe ³⁺	81000[in air]	??		

Conclusions

- Doping alumina with Fe (below the solubility limit) can retard grain growth during annealing treatment.
- The alumina effective GB mobilities decrease with the increasing of Fe concentration.
- Both Mg and Fe dopants can decrease GB mobility. Mg dopants have a stronger drag effect on alumina than that of Fe dopants.
- Fe dopants under solubility limit reduce GB mobility by solute drag, similar to doping Mg and Cr.

References

- 1. Akiva, Ran, Alexander Katsman, and Wayne D. Kaplan. "Anisotropic grain boundary mobility in undoped and doped alumina." Journal of the American Ceramic Society 97.5 (2014): 1610-1618
- 2. Cai, W., & Nix, W. (2016). Imperfections in Crystalline Solids (MRS-Cambridge Materials Fundamentals). Cambridge: Cambridge University Press. doi:10.1017/CBO9781316389508.
- 3. Powers, J. D., and A. M. Glaeser. "Grain boundary migration in ceramics." Interface Science 6.1(1998): 23-39.
- 4. Bennison, Stephen J., and Martin P. Harmer. "Effect of MgO solute on the kinetics of grain growth in Al₂O₃." Journal of the American Ceramic Society 66.5 (1983): C-90.
- 5. Moshe, Ruth, and Wayne D. Kaplan. "The influence of CaO on alumina grain boundary mobility." Journal of the European Ceramic Society 39.4 (2019): 1324-1328
- 6. Mendelson, Mel I. "Average grain size in polycrystalline ceramics." Journal of the American Ceramic Society 52.8 (1969): 443-446.